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Abstract—The introduction of the diffusion architecture has
led to rapid progress in image generation. These models learn to
iteratively generate images by predicting noise from an initial
Gaussian distribution, which is learnt through forward and
reverse diffusion. The process of iterative sampling occurs over
a number of inference steps. Classifier guidance is a popular
technique that guides the generation process of latent diffusion
models (LDMs). It does this by adding an external classifier into
the training process. This however requires additional training
and severely limits the diversity of the synthesized data along with
several other limitations. To improve on this, a novel approach,
known as Classifier-Free Guidance (CFG), was introduced that
removed the need for a separate classifier. It controls the sample
generation process using a parameter known as the CFG scale.
Previously, this scale has been set to a constant value during
inference. This research work proposes varying the CFG scale
values across the inference steps by making use of various
scheduling functions, which not only results in better images
but also unlocks the full potential of the rich latent space
representation of diffusion models by allowing for the sampling
of various different images from the same initial conditions by
only varying the CFG scale and keeping all other parameters
constant.

Index Terms—classifier-free guidance, diffusion, image gener-
ation, inference, text-to-image

I. INTRODUCTION

In the evolving landscape of generative models, diffusion-
based models have emerged as a versatile and expressive
family of models, demonstrating their effectiveness and mas-
tery in tasks ranging from image, audio and video synthesis
given a text prompt. The introduction of diffusion models,
most notably Stable Diffusion [1], challenged well-established
benchmarks in comparison to traditional autoregressive mod-
els.

Diffusion models can generate high quality samples by
iteratively applying a series of transformations to a noise
vector. The high level view of their training procedure involves
sampling random data points from a data distribution and
adding small increments of Gaussian noise to this sample over
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a series of time steps. This is known as the forward diffusion
process. The model is trained to predict the noise addition
using the reverse diffusion process, which essentially tries to
recover the original sample given a noise vector. With the case
of latent diffusion models, an additional step to encode training
samples into a lower dimensional latent space is performed
before forward diffusion. This also requires learning to decode
a latent space vector into higher dimensional data space
and is usually done by employing a variational autoencoder.
Additionally, with the use of attention mechanisms [2], the
model can be conditioned on various modals such as input
in the form of text, audio, video, or anything else. Due to
their versatile nature and sample quality, diffusion models have
quickly rose to fame, challenging well-established benchmarks
and leading to the creation of new ones. Some examples
include the famous DALL-E models [3]-[5], Stable Diffusion
[1] and SDXL models [6], Midjourney [7], Make-A-Video [8],
Imagen [9], and many more.

Despite the success of diffusion based models, these models
face a problem common between many generative approaches
- striking a balance between sample fidelity and diversity. This
quest for equilibrium has given rise to various strategies, with
one notable technique being classifier guidance. This method
tries to enhance the sample quality of diffusion models by
incorporating an external classifier into the training process.
This is effective, but introduces various complexities as it
requires training an additional classifier on noisy data and
severely limits the diversity of the synthesized data. In LDMs,
the additional step of decoding latent space vectors into their
higher dimensional data space adds a heavy computational
burden, and although methods have been proposed to bypass
this issue, there are various other limitations as well.

Enter the focus of this paper’s exploration: classifier-free
guidance for diffusion models [10]. This innovative approach
challenges the conventional wisdom by eliminating the need
for a separate classifier. Instead, two models are trained,



one being conditionally aligned and the other being un-
conditional, aiming to achieve a nuanced trade-off between
sample quality and diversity similar to that accomplished
by classifier guidance. The construction of the “classifier”
from a generative model sets the stage for a robust gradient,
facilitating a straightforward implementation for conditioning
which streamlines the training process and results in much
better sample quality and alignment to different modalities.

Classifier-free guidance requires two forward passes, one
for conditional and unconditional models each, followed by
a linear extrapolation (not interpolation because values in the
ranges [0, 1] are not typically used) between the two. In most
implementations, however, the forward passes are combined
into a single pass by concatenating their input latents. The fac-
tor for extrapolation has, traditionally, been fixed throughout
the inference process to a constant scalar value called the CFG
scale or guidance_scale (Stable Diffusion v1.5, for example,
produces high quality images for CFG scale values between
5 and 15). This study explores dynamically scheduling of the
CFG scale using various schedules and compare the results
using FID [11] (Fréchet Inception Distance calculates distance
between multivariate Gaussian distributions fitted to real and
generated image features, providing a quantitative measure of
their similarity), IS [12] (Inception Score evaluates the quality
of sampled images by assessing two main aspects: diversity
and classification confidence) and CLIP [13] (CLIP Score is a
metric, which does not require a reference, that can be used to
evaluate the correlation between the caption and content of the
image. CLIP’s evaluation is not based on a single, universal
metric but rather on task-specific metrics).

The main contributions of this research study are as follows:

« Investigation of the effect of dynamically scheduling the
CFG scale at inference time on the resulting outputs
through metrics like CLIP Score, FID and IS.

« For a fixed starting noise and CFG scale, the results are
always the same (assuming hardware is the same). This
study shows that dynamically scheduling CFG allows
for a wide variety of generations and demonstrates the
richness of the latent space of diffusion models.

e This study shows that certain CFG scheduling tech-
niques produce more aesthetically appealing images over-
all, based on the evaluation metrics. These scheduling
techniques are applied to multiple schedulers such as
DDIM, DDPM, EulerAncestral, DPM Solver Singlestep,
DPM Solver Multistep, UniPC, and LCM among others.
Results are shown in the Appendix section of the paper
along with other implementation details and prompts
used. For evalutation, a model trained on the ImageNet-
1k dataset and benchmarked on the Tiny ImageNet-1k
split is used, due to compute limitations.

II. RELATED WORKS
A. Diffusion Models

Diffusion models are a type of generative models, which
draw inspiration from non-equilibrium thermodynamics in
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Fig. 1. Forward diffusion on MNIST

physics. A Markov chain of diffusion steps is used to sys-
tematically introduce random noise (usually Gaussian) into
data and subsequently learn to reverse this process, thereby
enabling the generation of desired data samples starting from
random noise. In contrast to variational autoencoders (VAEs)
or flow models, diffusion models do not encode their data
into a smaller latent space and instead operate in higher
dimensionality space of the original data. Note that Stable
Diffusion models, however, employ a VAE to first encode
original data into lower dimensionality latent space and then
perform diffusion learning as this enables faster training and
yields better results.

The training a diffusion model is performed in two steps:
forward and reverse diffusion. The forward diffusion process
involves taking a data point, sampled at random from a data
distribution, and adding small increments of Gaussian noise
to this sample over a series of timesteps (see Figure 1). The
magnitude of noise added is controlled by variance schedules.
With more forward diffusion steps, the sample progressively
loses its distinctive features until nearly approximating a
sample from a Gaussian distribution. The reverse diffusion
process is similar to forward diffusion. Let ; denote the noisy
sample at timestep ¢ and z;4; denote the sample after the
t’th Gaussian noise addition step in forward diffusion. During
the reverse process, the goal is to recover the true sample
from the noisy data. To achieve this, a model is trained to
approximate the conditional probabilities that are necessary
for this transformation. Mathematically, the model learns to
estimate the conditional probability of transitioning from x;
back to x; given the noise level and variance schedule.



B. Classifier Guidance

Guidance has proven to be a very powerful method for
sampling and allows for addition control in diffusion models.
It involves making use of gradients from an external classifier
to provide a learning signal and steer the generation process
so that model can align better with different input condition-
ings. This was shown to be very effective and dramatically
improving generation quality by Dhariwal et. al. [14].

While using classifier guidance has its perks, it comes
with additional costs. It requires an external image classifier
that is robust to noisy images (as every step of the reverse
diffusion process requires a gradient signal to make sure that
the alignment to conditionings takes place). Even if there was
such a classifier, there are other problems such as additional
computational requirement and limited effectiveness due to
information loss during classification because of a fixed set of
output class activations. It is unsuitable and not scalable for
a large corpus of training data, especially when working with
different modalities.

C. Classifier-Free Guidance

Classifier-free guidance [10] guides the iterative sampling
process of a diffusion model towards a conditioning signal
by mixing unconditional and conditional noise predictions
using linear extrapolation. N, is the noise prediction from
the conditional model, Ny,conq is the noise prediction from
the unconditional model, Np.q is the final predicted noise
that will be removed using a diffusion sampler and g; is the
scheduled guidance scale at the ¢’th step during inference.

Npred(i) - Nuncond + 9i (Ncond - Nuncond) (1)

A negative CFG scale would result in the model working to
generate what it believes is the opposite of the representation
of the prompt. A higher CFG scale results in better quality
outputs, but only to a certain limit beyond which the creativity
of the model is stunted and the output begins to develop
problems like overexposure, grain, etc. On the other hand, a
lower CFG scale allows the model to exercise more creativity
in the generation process, but at the price of accuracy of
representation. Through trial and error, a constant CFG scale
belonging to [7,12] was found to generate optimal images in
most cases and is used by most models today.

Models utilizing classifier-free guidance scale do so by
applying the same scale at each step of the inference process,
such that plotting CFG scale against the inference step would
result in a line with zero slope. The following sections outline
various methods of scheduling the CFG scale along different
functions.

III. METHODOLOGY

Dynamic Classifier-Free Guidance

The aim was to observe the effect of varying the CFG scale
on the output, or in other words how the varying of the level of
creativity the model uses, during the inference process affects
the generated image. Using the below scheduling equations,

Fig. 2. Linear Guidance Scale Scheedules

various images are generated to observe the effects dynamic
CFG scale would have on the output.

Traditionally, for a fixed seed and parameters, the generated
images using CFG are always the same. That is, for a given
set of initial conditions the outputs are the same. However, the
latent space representation of diffusion models is very rich and
can be explored further using dynamically scheduled guidance
resulting in several different high quality generations from the
same initial conditions.

The equations mentioned below are used to schedule the
guidance. The start and final values of the CFG scale are
denoted by gsiart and gfingi. The total number of inference
steps is IV. g; is the CFG scale values used at the inference
step 1.

A. Linear Scheduling Equation

In the linear scheduling equation, the classifier-free guid-
ance scale is incremented or decremented by a constant value
at each inference step, in other words, plotting the CFG scale
versus the inference step number would result in a straight
line. The values of guidance scale in the linear scheduling
equation vary as described by Eq. (2).

i

i = Gstart T m ’ (gfi"(ll - gSt‘”t) 2)

B. Cosine Scheduling Equation

The cosine scheduling equation models the CFG scale along
a sinusoidal path through the inference process. The scheduler
takes in parameters allowing the user to determine the period
(T), amplitude, phase shift (¢) and vertical shift (9) of the sine
wave. Additionally, the user can add linear warm-up steps to
the scheduler, which increments the CFG scale uniformly over
a fixed number inference steps, between a start and end value.

This wave-based scheduler allows us to oscillate the model’s
creativity sinusoidally between any two values.

Gfinal — Ystart

. (1 T cos (%T (N’1 - ¢>())>+5

9i = Gstart+



Fig. 3. Sinusoidal Guidance Scale Schedules

Fig. 4. Exponential Guidance Scale Schedules

C. Exponential Scheduling Equation

The exponential classifier-free guidance scale scheduler
varies the CFG scale exponentially between each inference
step, described by Eq. 4. This scheduler takes a single pa-
rameter, the rate of decay kgecay- A smaller value results in a
slower decay.
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9i = Gstart T (gfinal - gstart) : <N ]

D. Sawtooth Scheduling Equation

The sawtooth function is a non-sinusoidal periodic wave
function that is characterized by a periodic linear increase
over a fixed interval followed by a sudden drop. The in-
verted/reverse sawtooth wave follows an opposite periodic
trend of linear decrease followed by a sudden rise. Both of
these have been implemented by the Eq. 5. The scheduler
allows the user to specify the phase shift (¢).

9final — Ystart

5 (£sawtooth (27 (i — ¢))) (5)

9i = Gstart +

IV. RESULTS

Upon generating images with the various different dynamic
CFG scale schedulers, many substantial changes for certain
diffusion samplers (like DDIM, DDPM, etc.) and insignificant
changes for certain samplers (such as DPMSolverMultistep)
are found. Subjectively, some images look better than others,
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Fig. 5. Sawtooth Guidance Scale Schedules

but to qualitatively decide which DCFG works best, compar-
isons have been performed using contrastive language-image
pretraining (CLIP) scores, frechet inception distance (FID) and
inception score (IS). A higher CLIP score means better prompt
adherence, lower FID means more similarity between training
data vs. generated samples, and a higher IS means better
quality and diversity as more samples are correctly identifiable.

Comparing the results tabulated in Table 1, it is seen that
Constants gives us the best CLIP score, Exponentials has
the best FID score (lower is better) and Cosines has the
best IS score (higher is better). Certain schedules work well
and achieve a great balance between prompt adherence and
sample quality. From experimentation and subjective human
preference analysis of the generated images, it is found that
using exponential and cosine guidance scheduling tend to
produce better looking generations overall.

V. CONCLUSION

In conclusion, various schedules for dynamically controlling
the CFG scale during inference were explored. This allows for
a better exploration of the rich latent space of diffusion models.
Subjectively, after having generated thousands of images using
various different dynamic schedules, the generated image qual-
ity is sometimes better or at least equivalent in comparison to
the original constant scheduling, in terms of prompt alignment
and diversity, when using certain dynamic schedules.

As more research is carried out into diffusion models,
sampling techniques like CFG are being used in new ways
(see latent consistency models, and sometimes not at all (see
SDXL-Turbo). As new techniques for sampling are developed,
it would be interesting to see the latent space representation
of diffusion models exploited to its fullest extent in delivering
high quality, high fidelity and diverse generations.



TABLE I

EVALUATION
DCFG Schedule | CLIP (1) | FID (}) | IS (1)
Constanty 29.74 17.32 128.4
Constants 29.68 17.96 130.7
Constants 30.05 16.56 132.3
Constanty 29.95 18.01 131.1
Lineary 29.04 16.59 137.1
Linears 29.97 16.93 1359
FExponentialy 29.36 22.43 142.2
FExponential 29.22 21.30 143.9
FExponentials 29.71 19.69 141.3
FExponentialy 29.34 19.44 141.7
FExponentials 29.53 15.09 145.5
FExponentialg 29.23 15.67 145.3
FExponentialy 29.36 16.02 144.1
FExponentials 29.24 16.28 143.6
Cosinel 29.99 18.24 142.5
Cosines 29.62 18.65 140.3
Cosines 29.68 18.35 140.6
Cosiney 29.58 18.91 150.7
Cosines 29.90 17.93 146.6
Cosineg 29.73 17.89 143.0
Cosiner 29.24 18.07 144.2
Sawtoothy 29.90 19.47 149.2
Sawtooths 29.72 24.09 128.1
Sawtooths 29.68 19.03 133.9
Sawtoothy 29.61 18.72 1354

Note: The results have been obtained by running the CLIP, FID and IS
metrics on images generated using 50 inference steps with the DDIM
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In the following subsection, explanations are provided for
the different schedule parameters used in the DCFG schedules.

1) Constant Schedules: The constant schedule takes in a
single parameter, value, which will remain constant through
the inference process.

o Constanty: 5.

o Constantsy: 7.5.
o Constants: 10.
o Constanty: 12.5.

2) Linear Schedules: The linear schedule (see Eq. 2) takes
in parameters in the order gsiqrt and gfinal

o Lineary: (2, 12).

o Lineary: (12, 2).

3) Exponential Schedules: The exponential schedule (see
Eq. 4) takes in parameters in the order gstart, gend and Kgecay-
(2, 12, 4.0).

(2, 12, 2.0).
(5, 10, 4.0).
(5, 10, 2.0).
(2, 12, 0.25).
(2, 12, 0.5).

o FExponentialy:

o Exponentials:

o FExponentials:

o FExponentialy:

o Ezxponentials:

e Exponentialg:

o FExponential;: (5, 10, 0.25).

o FExponentialg: (5, 10, 0.5).

4) Cosine Schedules: The cosine schedule (see Eq. 3) takes
in parameters in the order gsiqrt, Gends L (period), ¢ (phase
shift), & (vertical shift), abs (whether to make all values
positive) and [,, (linear warm-up steps).



e Cosiney: (2,12, 1
o Cosines: (2,12, 2,
o Cosines: (2,12, 1
o Cosiney: (2,12, 2,
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o Cosines: (-5.5, 12, 2, 0.25, 0, True, 0).

o Cosineg: (2, 12, 2, 0.25, 0, True, 0).

o Cosiner: (2,12, 1, 0.5, 0, True, 0).

5) Sawtooth Schedules: The sawtooth schedule (see Eq. 5)
takes in parameters in the order gsiqrt, Gend, I (period), ¢
(phase shift), abs (whether to make all values positive) and
type (whether the sawtooth starts as a rising or falling).

. Sawtooth1
o Sawtooths
o Sawtooths
o Sawtoothy

1 (-2, 12, 5, 0.5, True, ’rising’).
1 (2, 12, 5, 0, True, ’rising’).

1 (2, 12, 2, 0, True, ’falling’).

1 (2, 12, 2, 0, True, ’rising’).

6) Graphs of various guidance schedules: The horizontal
x-axis is the number of inference steps, and the vertical y-axis
is the guidance values corresponding to a particular inference

step.
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